
Invoice Demo
Lincoln Stoller, Ph.D

Copyright ©1997 Braided Matrix, Inc., All rights reserved.

Contents
Overview 1
Running the Application 2
Programming Elements 4
Interface Elements 9
Summary 16

Overview
The Invoice Demo application illustrates a powerful and extendible method for
handling multi-line invoice information. It also demonstrates important pro-
gramming, and user interface techniques. These techniques, listed below, are dis-
cussed in the following sections.

Programming
Related table structure
4D Transactions
ID assignment
Subtables
Modularized code
Distributed methods

Interface
Control screen interface
Tab and popup controls
Resizable forms
Enterable included forms
Clairvoyant look-up
Process interaction

The demo is built from 4th Quarter® Accounting Solution, an accounting platform
written in 4D and marketed by Braided Matrix, Inc. for high-end custom applica-
tions. While the invoice example is limited in scope, it is not a toy system. It is the
same invoicing system that we use at Braided Matrix to support complex and com-
prehensive 4D applications.

To learn more about how invoices can be integrated into a comprehensive ac-
counting system, refer to the article "Accounting Transactions IV: Invoices" lo-
cated on this volume. If you're interested in the 4th Quarter Accounting Solution
application please contact me at Braided Matrix. We can be found on the web at
www.4thquarter.com.

- 2 -

Running the Application
The demo opens in the custom menus environment, where the only means of ac-
cessing the data is through the menus and forms that the designer has provided.
You navigate through the application from the control screen. The first page of
the control screen provides access to the client, inventory, and invoice areas. You
can also reach these areas by selecting one of the items under the Tables menu.

You reach the second page of the control screen by pressing the arrow icon in
the upper left-hand corner. The second page provides some brief instructions on
how to get in and out of the design environment.

Clicking on either the client, inventory, or invoice icon opens an output or list
form. This output form appears in the same window as the control screen. For the
most part the Invoice Demo is a single-window application.

From the output forms you can add, modify, or delete records from the three main
areas. The application also uses tables internally for the management of invoice
data. These are the System_Default, ID_Number, and sfLineItems tables. These ta-
bles are handled by the application, and their role is largely hidden from the us-
er.

Finally, in the About dialog, I’ve provided a demonstration of how you can imple-
ment simple animation using two 4D processes. The About dialog is accessed
through the "About the Invoice Demo…" item under the Apple menu (MacOS).

- 3 -

The whimsical animation in the about box offers an example of how two processes
can interact. The example is easy to follow because it does not involve any data
management.

- 4 -

Programming Elements

Related file structure
The four central tables in the Invoice Demo are the Client, Invoice, Line Item, and
Inventory tables. These tables illustrate parent-child, or one-many relations, as
follows:

Parent (One) Child (Many)

Client Invoice

Invoice Line Items

Inventory Line Items

Notice that the invoice table stands in a one-to-many relationship to the line
items, and a many-to-one relationship to the clients. This means that you can
have many line items related to one invoice, and many invoices related to one cli-
ent. The invoice-line item record structure establishes a relationship between in-
ventory items and the clients who have placed orders for those items.

4D Transactions
4D Transactions provide a means of buffering changes to the datafile. When you
start a 4D transaction, all changes that are saved are stored in memory on the local
machine until the transaction is completed. The modified and saved records re-
main locked to all other users on the network. When the transaction is validated,
all changes are written to disk at once. If the transaction is canceled, the datafile
is left unchanged. In either case all the records locked during the transaction are
unlocked.

- 5 -

4D transactions are indispensable for handling record entry in multi-user appli-
cations. However, they also play an important role in the context of a single user
application. You use a 4D transaction whenever you need to save changes to
records that are subject to some collective condition. In the case of the invoice, all
the items ordered must be in stock, or the whole invoice cannot be entered. Using
a 4D transaction allows you to check and update each line item in sequence. If a
particular item is not in stock the transaction is canceled and the changes are
"rolled back."

The code that manages the 4D transaction is located in the ICHandleEntry proce-
dure of the invoice demo. For more information on 4D transactions refer to the
sidebar in the "Related Entries Using Subrecords" article.

ID assignment
ID numbers are the primary key values that distinguish records in different ta-
bles. These play a central role in relational database design. 4th Dimension auto-
matically generates a separate series of unique numbers for each file. These
numbers are returned by a call to 4D's Sequence Number function. However, most
developers find it advantageous to manage their own sequence numbers. This al-
lows you to support any number of sequences, and to increment and assign them
whenever and however you want.

The common means of supporting your own ID numbers is to create an ID number
table. This is the ID_Number table in the invoice demo. This table contains two
fields: a sequence name field that distinguishes the different ID sequences, and a
NextIDNumber field that contains the next unique number in that sequence.

A certain subtlety is required for managing ID number records. This is because
these records are centrally important (you cannot enter a record if it cannot be
assigned an ID), and because they are a potential bottleneck for multi-user appli-
cations (every user must gain access to the same ID number record in order to se-
cure a new ID number).

The methods you create to handle ID numbers must ensure that no two users are

Start
Transaction

Validate

Cancel

save to disk

changes discarded

make
interdependent

changes

- 6 -

ever assigned the same sequence number, and that sequence number records are
kept locked as briefly as possible. Since the possibility of locked sequence number
records always remains, you must also implement some means of gracefully in-
forming the user when such a situation occurs.

All of these requirements are met by the SYIncrmntSeqNum method. For an ex-
ample of how it is used, refer to the code in the CLInitializeVars method.

Subtables
The invoice table is related to a subtable called "sfLineItems". This subtable is used
as a buffer for changes made to the related LineItems records. The subtable pro-
vides temporary storage for changes made to records in the LineItems table stored
on disk. The subrecord entries themselves are created only for the purposes of
data entry, and are not stored as part of the datafile.

This kind of buffered entry allows you to make incremental changes to the related
records, then save those changes all at once when the invoice information is
saved. Buffered entry is more than a good idea, it is required to preserve data in-
tegrity. To learn more about this technique, refer to the article "Related Entries
Using Subrecords" located on this volume.

Using subtables in this manner is one of the best tools for entering related
records. The subrecords are memory-resident, and they have a record structure
like the actual tables. In addition, 4D gives us powerful tools for subrecord entry
and display that are not available for arrays.

Modularized code
4D provides several built-in classes of objects from which all 4D databases are
constructed. The major classes are tables, forms, and methods. In addition there
are menus, lists, styles, and a large variety of interface controls.

These classes enable you to manage the pieces of your application. It is also useful

- 7 -

to subdivide the objects that you create within these classes. The methods used in
the invoice demo span four separate areas of function, which I will refer to as
"modules." These are the client, invoice, inventory, and system modules. The mod-
ule to which a given method belongs is indicated by the first two letters of its
name, as shown in the following table.

Module Method prefix Nº of methods

Client CL 5

Invoice IC 8

Inventory IN 5

System operations SY 11

Distributed methods
In addition to these four modules, most methods perform several separate but re-
lated operations. That is, the method will perform one of a set of different opera-
tions depending on a value that's passed as its first parameter. Consider the
ICHandleItems method whose "case of" structure is shown below.

`ICHandleEntry
Case of
:($1="Total_Items")
-- code --
:($1="Save_Items")
-- code --
:($1="Delete_Subrecords")
-- code --
:($1="Load_Subrecords")
-- code --
:($1="Assign_Inventory")
-- code --
:($1="Clear_Item")
-- code --
End case

This method handles the subrecords that are used to buffer changes made to
records in the LineItems file. Various different operations must be performed to
support this use of subrecords, as can be seen from the different action codes
passed in the first parameter (the value of the first parameter is stored in the local
variable named $1). While these operations are distinct, being performed at dif-

Client Invoice Inventory
System
Operation

Methods

- 8 -

ferent times, the are also closely related.

Putting related operations in a single method makes it much easier to coordinate
your code. If you need to add or change a field, this method makes it easier to apply
all the necessary changes. A similar reasoning leads to the use of "object methods"
in object oriented programming languages. Using this method in 4D yields many
of the same code management benefits.

Assign_Inventory

Load_Subrecords

Delete_Subrecords

ICHandleEntry
method

Total_Items

Save_Items

Clear_Item

- 9 -

Interface Elements

Control-screen interface
When the application is launched it performs some system record keeping, as-
signs global variables, then launches the control screen process. This process
opens the control screen shown below.

Clicking on the icons for the different areas opens a list form that replaces the
control screen. The list form is actually opening in the same window used to dis-
play the control screen. You don’t need to exit the control screen dialog — the list
form opens in front of it. When you exit the list form you return to the control
screen.

The implementation of a control screen is made simple by displaying all the data
in the same window. The control screen can be modified to support multiple win-
dows. To do this you will need to spawn a new process for each area, opening a sep-
arate window in each.

Tab and popup controls
Most of the examples of control objects appear on the invoice entry form. Here the
tab control is used to navigate between the invoice’s client and line item pages.
The tab object is drawn on page 0 of the form. The tab’s action is set as "Goto Page"
in the object inspector. When set in this manner,

- 10 -

 clicking on the tabs automatically takes the user from one page to the next.

The tab labels are set in the script of the tab itself. This script has two actions, one
that sets up the tab when the form is first entered, and another that clears mem-
ory when the form is unloaded.

Case of
 : (Form event = On Load)
 InvoiceTab := New list
 APPEND TO LIST (InvoiceTab;"Customer";1)
 SET LIST ITEM PROPERTIES (InvoiceTab;1;True ;0;0)
 APPEND TO LIST (InvoiceTab;"Items";2)
 SET LIST ITEM PROPERTIES (InvoiceTab;2;True ;0;0)

 : (Form event = On Unload)
 CLEAR LIST (InvoiceTab)
End case

A combo box is used on page two for the entry and display of shipping informa-
tion.

- 11 -

The object is associated with the vyShipVia array, and the elements assigned to
this array appear in the popup menu of the combo box. Values are assigned to this
array from the "ShipVia" list. This is done in the ICHandleEntry method at the time
the form is loaded. It is accomplished with a single call to LIST TO
ARRAY ("ShipVia";vyShipVia).

Resizable forms
Both pages of the invoice entry screen are resizeable. The objects on these pages
move or scale as the window grows. On the second page the line item subtotals
move with the lower edge of the window. The included form expands with the
height of the window.

Object motion properties are set on the object properties page of the inspector, as
shown below. You must specify the properties of each object correctly. Otherwise
objects may move out of alignment or become overlapped when the window size
is changed.

- 12 -

If you select multiple objects (by holding the shift key down while clicking on a
sequence of objects), then the properties you set in the inspector will apply to all
selected objects.

The scaling properties of the form itself must also be set. This is done from the Siz-
ing Options page of the Form Properties window. These settings apply to all pages
of the form. The resizing properties of the form and the objects on the form must
be set for resizing to work.

Enterable included forms
Line items appear on the second page of the invoice. These are not the line item
records stored in the datafile, but copies of them temporarily stored in the sfLi-
neItems subtable. The subtable is displayed on the invoice form using an included
form object.

- 13 -

To use an included form, first create the form in the usual manner using the
Forms Editor. The sfLineItems_o form is stored with the subtable.

Next draw an included form object on the form using the subform tool. The
sfLineItems_o form is assigned to the object by click-dragging the outline of the
form from the Explorer onto the object on the layout. You cannot directly enter
the name of the form in the List Form area.

The objects on the subform are set to be enterable, and are given scripts so that
they will respond to the values entered. The subform object, as it appears on the
invoice, must also be set to be enterable.

Clairvoyant look-up
Clairvoyant look-up refers to the feature where the application looks up values
based on partially entered specifications. In the invoice demo three fields support
this type of data entry: the client name, item code, and item name fields. We’ll only
consider the client name look-up since the other clairvoyant fields behave in
much the same way.

To use the client look-up, enter the first letters of a client’s name in the client

- 14 -

area on the first page of the invoice. When you tab out of the field, the application
examines the value entered. If the value does not end with the wild card character
("@"), the system adds it. Ending the search string with a "@" sign indicates to 4D’s
search engine that it should locate all records whose field values begin with the
indicated letters.

When the application looks for a client it can either find none, one, or multiple
client records. The look-up is performed in the ICAssignClient method. Each case
is handled differently.

If... Then...

No client found, erase the name entered and inform the user.
Multiple clients found, display list and ask user to pick one.
One client found, display full name and assign to invoice.

The flow chart for this look-up process is shown below.

When the system identifies the client that the user intends to list on the invoice,
it displays the client’s full name in the client entry area. It also stores the ID of
the indicated client in an invoice field.

When the client ID is stored with the invoice, it is referred to as a "foreign key."
In general any record will store the foreign keys of all the records to which it is
related. This foreign key maintains the link between the invoice and the client,
not the client’s name. That is to say, the client name field, in which the look-up
was entered, is not actually stored with the invoice. Whenever an invoice is dis-
played or modified the name of the related client is looked up in the client table
based on this unique client ID.

Look up client

found
0

found
>1

found
1

Inform user

Display full name
Assign to invoice

Display list

Canceled
selection

Selected
one

else

else

Specify name Erase value
Request other

- 15 -

Process interaction
The "About" dialog box displays a simple animation that consists of the repeated
display, in rapid succession, of a sequence of 15 pictures. This is an illustration of
process interaction. The dialog box is displayed in one process while the other
process runs in the background sending a regular stream of messages to the dia-
log process, telling it to display a different picture.

Two local processes are spawned by the SYAbout method. The dialog box is dis-
played in a process named "$AboutProcess," which is governed by the SYAbout-
Process method. The background process which acts like a timer, runs in a
process named "$AboutTimer." It is governed by the SYAboutBoxTimer method.
These processes can only be local processes because they do not access the data-
file. If they did any data access at all they would have to be redefined as global
processes.

The $AboutTimer process runs a Repeat loop that first delays the timer process for
a short time, issues the Call Process command with the ID of the $AboutProcess,
then checks the state of the $AboutProcess process. This loop keeps repeating un-
til it determines that the $AboutProcess process has terminated.

`SYAboutBoxTimer
`This method triggers an Outside Call event in the About process.

Repeat
 DELAY PROCESS(Current process ;5)
 CALL PROCESS(◊AboutProcessID)
 PROCESS PROPERTIES (◊AboutProcessID;$Name;$State;$Time)
Until (◊KillAboutTimer | ($State<0))

The Call Process command triggers an On Outside Call event directed to the dia-
log’s form method. Every time the outside call event occurs the form method as-
signs the next picture in the sequence.

The commands used for interprocess communication in this example are

New process
PROCESS PROPERTIES
BRING TO FRONT
DELAY PROCESS
CALL PROCESS

Interprocess communication techniques are crucial to effective multiprocess ap-
plications. Processes run concurrently through a mechanism of preemptive
multi-tasking at the level of the 4th Dimension application. Processes are not only
used to support multiple windows, but also to support multiple concurrent pro-
cessing.

- 16 -

In supporting multiple concurrent processes 4th Dimension goes well beyond
simple multiple windowing. To see multiprocessing in action, open the About the
Invoice Demo animated dialog box, then click back on the control screen. The an-
imated about box continues to run in a separate window without interfering with
your use of the invoice screens.

Summary
The invoice demo illustrates various 4D design methods and programming tech-
niques. The demo tracks a single inventory level, and does not distinguish quan-
tities on order from quantities remaining in stock. The system also does no
accounting. Be aware that the accounting entries involved in invoicing are quite
complex.

The purpose of the demo is to introduce you to many of the important elements in
4D that are useful in developing an invoicing system. The invoices provide a tem-
plate for the construction of a more comprehensive invoicing system.

4th Quarter Accounting Solution, from which this demo was derived, is a complete,
integrated and fully modifiable business and accounting platform. It is available
as source code with full documentation, technical notes, and training materials.

